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The COVID-19 pandemic has created a serious and prolonged 
public health emergency. Older adults have been at sub-
stantially greater risk of hospitalization, intensive care unit 
admission and death due to COVID-19. As of February 2021, 
over 81% of COVID-19-related deaths in the US occurred in 
people over the age of 65 (refs. 1,2). Converging evidence from 
around the world suggests that age is the greatest risk factor 
for severe COVID-19 illness and for the experience of adverse 
health outcomes3,4. Therefore, effectively communicating 
health-related risk information requires tailoring interven-
tions to the needs of older adults5. Using a new informational 
intervention with a nationally representative sample of 546 
US residents, we found that older adults reported increased 
perceived risk of COVID-19 transmission after imagining a 
personalized scenario with social consequences. Although 
older adults tended to forget numerical information over time, 
the personalized simulations elicited increases in perceived 
risk that persisted over a 1–3 week delay. Overall, our results 
bear broad implications for communicating information about 
health risks to older adults and suggest new strategies to 
combat annual influenza outbreaks.

News and social media have repeatedly documented the risky 
behaviors of Americans throughout the pandemic and recent sur-
vey evidence suggests that Americans tend to underestimate the risk 
related to COVID-19 transmission6. As COVID-19 has spread, so 
too has misinformation about both the efficacy of different preven-
tative behaviors (for example, mask-wearing, hand-washing) and 
the risks of engaging in certain commonplace behaviors where the 
virus could be transmitted (for example, grocery shopping, indoor 
dining, air travel). Unfortunately, those most at risk of severe illness 
and death due to COVID-19 (that is, older adults) are also most 
susceptible to believing misinformation. Older adults are far more 
likely to believe and share false information from social media7–9 
and this problem is getting worse as increasing numbers of older 
adults become active on social media10.

To combat COVID-19-related misinformation and ensure that 
individuals who are most at risk for severe illness (older adults) 
possess the information needed to make informed decisions, it is 
critical to develop interventions that meet the needs of older adults 
by (1) effectively conveying the risks of engaging in behaviors that 
could cause viral transmission and (2) ensuring that risk informa-
tion sticks over time. We developed an interactive intervention 
that would inform individuals about COVID-19-related risks, with 
the intention of improving downstream compliance with public 

health measures6. In the present study, we tested the efficacy of our 
intervention across the adult life span and compared strategies for 
communicating risk information to older adults. Drawing on theo-
retical frameworks of aging and motivation11,12, we designed our 
intervention to include elements that could optimize learning for 
older adults.

Past efforts to develop interventions for improving risk estima-
tion have shown some success but the effect sizes across interven-
tions are typically small; also, effects rapidly diminish over relatively 
short delays13–16. Although older adults typically self-report being 
more risk-averse17, their choice behavior is not always consistent 
with their stated preferences18. In some situations, older adults take 
more risks than younger adults19. Furthermore, older adults tend 
to seek out less information about risk12, which can have negative 
consequences for their health-related decisions20,21. Older adults are 
more prone to deliberately choose ignorance, especially when new 
information could be negative22. These problems may also be exac-
erbated because older adults tend to be less successful at learning 
from numerical feedback23,24.

However, personalized social information may help moti-
vate older adults to improve risk literacy. Socioemotional selec-
tivity theory (SST) posits that older adults are more motivated 
to make decisions that maximize emotional meaning, enhance 
social connections and emphasize personally relevant factors11,25,26. 
Prioritizing personally relevant social connections is adaptive when 
one perceives limited time left in life; bolstering social connections 
can offer emotional rewards and the practical benefits of a support 
network11,27. Importantly, these motivational changes that occur 
later in life correspond to broad changes in decision-making, emo-
tion regulation, learning and information-seeking11,12.

Leveraging these theoretical insights from SST, we predicted that 
if older adults are more motivated to attend to personally relevant 
social information, then they may be more responsive to an inter-
vention that involves generating rich, personalized mental imagery 
about close others. Past studies have used a type of mental imagery, 
termed episodic simulation, to enhance subsequent decision-mak-
ing processes28. Converging lines of research suggest that episodic 
simulation of the downstream outcomes of choices can improve 
subsequent decision-making, including self-regulation29–32. In par-
ticular, episodic simulations that involve imagining scenarios that 
are directly relevant for behavior33 and/or more vivid31 are most 
effective. Similarly, imagining a self-relevant scenario can lead indi-
viduals to judge the event as more likely to occur34, especially if the 
scenario is easier to imagine35. Therefore, a personalized episodic 
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simulation could influence beliefs about risk and enhance learning 
over time, particularly for older adults who are most at risk.

In this large-scale, multi-session study, our primary objective 
was to develop an effective intervention to change subjective per-
ceived risk related to COVID-19. The present study was part of a 
larger project; in a separate report, we describe the overall interven-
tion results6. In this study, we specifically investigated whether our 
intervention differentially affected younger and older adults; our 
approach unified theoretical insights from past studies on episodic 
simulation and motivation in older adults. In the present study, we 
identified new age-related differences and compared the efficacy of 
several strategies for communicating information about virus trans-
mission risk.

Our intervention involved presenting two kinds of information 
about risk: episodic and numerical information. We hypothesized 
that a personalized episodic simulation (relative to an impersonal 
or unrelated simulation) would facilitate subsequent learning about 
numerical risk information (particularly among older adults) 
because this task connected risk information with personally rel-
evant social consequences. However, we expected that older adults 
would be less responsive to numerical information about risk. As 
a secondary exploratory objective, we also investigated whether a 
personalized episodic simulation would motivate further informa-
tion-seeking, encouraging ongoing learning after the intervention.

We recruited a nationally representative online sample of 545 
US residents (stratified by age, sex and ethnicity to approximate the 
demographic makeup of the nation) (Methods). Participants com-
pleted a survey about perceived risk (due to COVID-19) of engaging 
in various everyday activities in their local community (for exam-
ple, grocery shopping, dining inside a restaurant) (Methods). Next, 
we randomly assigned participants to complete one of three variants 
of the episodic simulation task (Methods). In the personal simula-
tion condition, participants imagined a scenario where they hosted 
a dinner party attended by four specific close others (for example, 
friends, neighbors). In this scenario, a guest became seriously ill 
with COVID-19, exposed the other guests to the disease and also 
infected the host. In the impersonal simulation condition, partici-
pants imagined a fictional character experiencing the same sce-
nario. In the unrelated (control) condition, participants imagined 
a scenario that was neither personalized nor related to COVID-19. 
This control condition equated attention and time on task but we 
did not expect this unrelated imagination exercise to influence sub-
sequent learning. The episodic simulation was always the first part 
of the intervention because previous studies showed that an imagi-
nation exercise influences subsequent decision-making28,31,32. We 
expected that imagining a COVID-related scenario, especially if it 
were personalized, would change the way that participants engaged 
with subsequent information about risk probabilities.

After the episodic simulation, participants completed the second 
half of the intervention, which presented numerical information 
about risk. All participants completed a risk estimation task that 
involved predicting and receiving feedback about the prevalence of 
COVID-19 cases in their local communities (Methods). To quan-
tify the strength of this numerical risk intervention, we calculated 
information prediction errors, the discrepancy between predicted 
and actual risk values. If numerical risk information drives learning, 
then larger prediction errors (reflecting risk misestimation) should 
predict larger changes in perceived risk. Finally, after the two-
part intervention, participants completed the survey of perceived 
risk again (regarding everyday activities) (Methods). To assess the 
immediate and long-lasting effects of the intervention, we measured 
perceived risk both immediately after the intervention (session 1) 
and after a delay of 1–3 weeks (session 2).

In a separate report, we described how the intervention effec-
tively realigned perceived risk with actual risk6. In this study, we 
tested whether the effects of the intervention differed across the 

adult life span. Using multiple linear regression, we predicted 
immediate post-intervention change in perceived risk (immediate 
post-intervention − baseline) from the variables age (continuous), 
simulation condition (personal/impersonal/unrelated), average 
prediction error and all interaction terms. For all statistical analy-
ses, we report standardized β values (and 95% confidence intervals 
(CIs) around the slope estimate); these measures indicate effect 
size. As reported elsewhere6, we found a main effect of prediction 
error driving change in perceived risk (β = 0.22, 95% CI = 0.14–0.31, 
t = 5.06, P < 0.001), demonstrating that numerical feedback helped 
to realign perceived risk with actual risk. There was also an inter-
action between prediction error and simulation condition predict-
ing change in perceived risk6, such that learning from numerical 
information was enhanced when it was preceded by either the per-
sonal or impersonal simulation (personal versus unrelated: β = 0.16, 
95% CI = 0.04–0.29, t = 2.61, P = 0.009; impersonal versus unre-
lated: β = 0.17, 95% CI = 0.05–0.29, t = 2.73, P = 0.007; personal 
versus impersonal: β = −0.003, 95% CI = −0.12 to 0.12, t = −0.04, 
P = 0.965). Including the age variable in the model did not change 
the overall intervention effects6, demonstrating that both the per-
sonal and impersonal conditions effectively realigned perceived risk 
with actual risk for adults across the life span.

Next, we examined the age effects. We found that the interven-
tion produced immediate benefits for older and younger adults 
alike (Figs. 1a,b and 2a,b). Descriptive statistics for key variables by 
condition and age group are provided in Supplementary Table 1. 
We found that age (continuous variable) was not statistically sig-
nificantly related to change in perceived risk at session 1 (β = 0.01, 
95% CI = −0.08 to 0.10, t = 0.23, P = 0.791), nor did age interact 
with prediction error (β = −0.04, 95% CI = −0.13 to 0.05, t = −0.95, 
P = 0.343) or simulation condition (unrelated versus personal: 
β = −0.06, 95% CI = −0.18 to 0.06, t = 0.95, P = 0.340; impersonal 
versus unrelated: β = −0.02, 95% CI = −0.14 to 0.11, t = −0.25, 
P = 0.803; personal versus impersonal: β = 0.08, 95% CI = −0.05 to 
0.20, t = 1.19, P = 0.236). Overall, we found no statistically signifi-
cant age differences when perceived risk was assessed immediately 
after the intervention.

Next, we tested whether age was related to the longer-term effects 
of the interventions (session 2). Using multiple linear regression, 
we predicted lasting change in perceived risk (delayed post-inter-
vention − baseline) from the variables age (continuous), simula-
tion condition, prediction error and all interactions. We included 
a covariate for the duration of the delay period between sessions 
(ranging from 7 to 25 d). There was no statistically significant main 
effect of age on lasting change in perceived risk at session 2 (β = 0.02, 
95% CI = −0.07 to 0.11, t = 0.38, P = 0.704). However, there was an 
interaction between age and prediction error, such that the effects of 
the prediction error were not as evident in older adults after a delay 
(β = −0.15, 95% CI = −0.24 to −0.06, t = −3.30, P = 0.001). In other 
words, numerical information about risk did not effectively induce 
longer-term learning in older adults (Fig. 1c,d).

We also found an interaction between age and simulation condi-
tion, such that older adults reported a greater increase in perceived 
risk in the personal simulation condition (personal versus imper-
sonal: β = 0.15, 95% CI = 0.02–0.28, t = 2.31, P = 0.021; personal 
versus unrelated: β = 0.13, 95% CI = 0.004–0.25, t = 2.04, P = 0.042; 
impersonal versus unrelated: β = −0.02, 95% CI = −0.15 to 0.10, 
t = −0.39, P = 0.700). Although this pattern of results was numeri-
cally consistent with the pattern in session 1 (Fig. 2a,b), the effect 
of the personal simulation increasing perceived risk in older adults 
was enhanced over time (Fig. 2c,d).

To further clarify age-related differences, we next compared our 
condition contrasts across age groups. We modified the session 2 
regression model described above to replace the continuous age vari-
able with a categorical variable with three age bins (younger adults: 
18–39; middle-aged adults: 40–59; older adults: 60–81). We found 
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that relative to younger adults, older adults showed greater increases 
in perceived risk in the personal condition than in the impersonal 
condition (β = 0.21, 95% CI = 0.04–0.37, t = 2.45, P = 0.015). Relative 
to younger adults, older adults also reported greater decreases in 
perceived risk in the impersonal condition than in the unrelated 
condition relative to younger adults (β = −0.18, 95% CI = −0.35 
to −0.01, t = −2.05, P = 0.041). The contrast between the personal 
and unrelated conditions did not differ between older and younger 
adults (β = −0.03, 95% CI = −0.19 to 0.14, t = −0.35, P = 0.724). No 
contrasts with the middle-aged group were statistically significant. 
Overall, we found that the personal simulation condition elicited 
the greatest long-lasting increases in perceived risk for older adults.

We hypothesized that the benefit of the personal simulation for 
older adults may be enhanced after a delay because this condition 
could motivate individuals to independently seek out further infor-
mation about local risk levels. To test this idea, we conducted an 
exploratory analysis where we predicted post-intervention change 
in seeking information about local COVID-19 statistics (session 2) 
from the variables age (continuous), simulation condition, predic-
tion error, all relevant interaction terms and the covariate for delay 
duration. There was an interaction between age and simulation con-
dition predicting change in information-seeking, such that older 

adults selectively increased information-seeking during the weeks 
after the personal simulation (personal versus impersonal: β = 0.25, 
95% CI = 0.11–0.38, t = 3.61, P < 0.001; unrelated versus personal: 
β = −0.16, 95% CI = −0.29 to −0.03, t = −2.38, P = 0.018; impersonal 
versus unrelated: β = −0.14, 95% CI = −0.27 to −0.01, t = −2.18, 
P = 0.030). Overall, for older adults the personal simulation was 
associated with increased information-seeking about local risk lev-
els (Fig. 3a,b) and longer-term increases in perceived risk (Fig. 2c,d).

The COVID-19 pandemic has presented staggering new social 
and health-related challenges. In particular, older adults have been 
disproportionately impacted by the pandemic: older adults are at 
substantially greater risk of severe illness, hospitalization and death 
due to COVID-19 (ref. 3). Compounding these health concerns, 
older adults may prioritize information differently than younger 
adults when considering health-related risk information12,20,21,36 and 
older adults are more susceptible to misinformation7–9. In this high-
stakes context, it is crucial to develop interventions that convey 
information about health risks in a manner that is tailored to the 
needs of older adults.

In this study, we investigated the age-related effects (both imme-
diate and longer term) of several strategies for conveying informa-
tion about risk. Our new informational intervention was effective 
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Fig. 1 | Prediction error drives change in perceived risk but not for older adults. a, During session 1 (immediately post-intervention), average information 
prediction error scores were positively associated with change in perceived risk for younger adults (Pearson’s r(232) = 0.24, 95% CI = 0.11–0.36, 
P = 0.0002) and middle-aged adults (r(185) = 0.24, 95% CI = 0.11–0.38, P = 0.0007) but not older adults (r(113) = 0.16, 95% CI = −0.02 to 0.33, 
P = 0.086). b, Model-derived slope estimates (standardized variables) corresponding to the raw data depicted in a, indicating the main effect of the 
prediction error after controlling for the effect of intervention condition. The interaction between prediction error and age (continuous) was not statistically 
significant (β = −0.04, 95% CI = −0.13 to 0.05, t = −0.95, P = 0.343). c, During session 2 (1–3 weeks post-intervention), the prediction error was positively 
associated with change in perceived risk for younger (r(202) = 0.29, 95% CI = 0.16–0.41, P = 0.00002) and middle-aged adults (r(172) = 0.19, 95% 
CI = 0.04–0.33, P = 0.012) but not older adults (r(108) = −0.02, 95% CI = −0.21 to 0.16, P = 0.806). d, Model-derived slope estimates (standardized 
variables), corresponding to the raw data depicted in c, indicating the main effect of the prediction error after controlling for intervention condition and 
delay duration. There was an interaction between prediction error and age (continuous) (β = −0.15, 95% CI = −0.24 to −0.06, t = −3.30, P = 0.001). a,c, 
The points depict individual scores (jittered for visualization) and the lines depict correlations for each age group (two-sided tests, not corrected for 
multiple comparisons). b,d, The lines depict slopes derived from multiple linear regression models that included age as a continuous variable (two-sided 
omnibus tests). The error bands indicate the 95% CIs.
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for both older and younger adults alike6. Immediately after the 
intervention, older adults reported changes in perceived risk that 
were comparable to those reported by younger adults. However, age 
differences emerged over time. Although younger adults success-
fully retained learning after a delay of 1–3 weeks, older adults were 
more likely to lose the benefits of the intervention over time if the 
information was poorly matched to their emotional and cognitive 
processing characteristics. In this study, we showed that numeri-
cal information about risk (quantified as information prediction 
errors) effectively drove longer-term learning in younger adults but 
not older adults. This is consistent with previous evidence that, rela-
tive to younger adults, older adults learn more slowly from predic-
tion errors during reinforcement learning tasks37,38. Crucially, older 
adults reported greater long-lasting increases in perceived risk only 
when they imagined the possible outcomes of risky decisions that 
affected themselves and close others. Imagining an impersonal or 
unrelated scenario did not increase perceived risk in older adults, 
either immediately or after a delay.

In an additional exploratory analysis, we also found that for older 
adults only, the personalized episodic simulation was associated 
with increased information-seeking. During the post-intervention 
delay period (1–3 weeks), older adults (but not younger adults) who 
received the personalized simulation reported actively consuming 

more information about local COVID-19 risk levels relative to their 
pre-intervention habits. This finding suggests that the personalized 
episodic simulation helped motivate ongoing learning and cultivate 
a habit of information-seeking. Recent research has shown that older 
adults tend to be less willing to seek new information, even deliber-
ately choosing ignorance when the information could be negative22. 
Our intervention offers a promising new method to encourage 
information-seeking in older adults. Overall, our results suggest 
that including a personalized imagination exercise can enhance the 
efficacy of interventions that target older adults, facilitating longer-
term learning and better health-related decision-making.

We found that the effect of numerical risk information on older 
adults was weakened over time but the personalized imagination 
exercise elicited lasting increases in perceived risk and information-
seeking. Older adults may be more prone to forgetting numerical 
risk information. However, another possibility is that they could 
have replaced or updated this knowledge with new informa-
tion that was encountered after the intervention. We tested this 
account by comparing risk estimation accuracy during session 2 
but did not find evidence that older adults who engaged in more 
information-seeking became more accurate at estimating updated 
risk levels, regardless of the intervention condition (Supplementary 
Information, Session 2 risk estimation accuracy). Overall, our 
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Fig. 2 | Comparing the effects of episodic simulations (personal, impersonal and unrelated) on perceived risk across the adult life span. a, During 
session 1 (immediately post-intervention), there were no statistically significant associations between age and change in perceived risk (personal: 
r(179) = 0.10, 95% CI = −0.05 to 0.24, P = 0.175; impersonal: r(178) = 0.03, 95% CI = −0.12 to 0.17, P = 0.739; unrelated: r(182) = 0.004, 95% CI = −0.14 
to 0.15, P = 0.953). b, Model-derived slope estimates (standardized variables) corresponding to the raw data depicted in a, indicating the main effect 
of simulation condition after controlling for prediction error. The interaction between simulation condition and age (continuous) was not statistically 
significant (F(2,524) = 0.79, P = 0.455). c, During session 2 (1–3 weeks post-intervention), there was a positive association between age and change in 
perceived risk selectively in the personal simulation condition (r(156) = 0.16, 95% CI = 0.003–0.31, P = 0.045), but not in the impersonal (r(163) = −0.03, 
95% CI = −0.18 to 0.13, P = 0.731) and unrelated (r(169) = −0.04, 95% CI = −0.19 to 0.11, P = 0.608) conditions. d, Model-derived slope estimates 
(standardized variables) corresponding to the raw data depicted in c, indicating the main effect of simulation condition after controlling for prediction error 
and delay duration. There was an interaction between simulation condition and age (continuous) (F(2,475) = 3.41, P = 0.034). a,c, The points depict individual 
scores (jittered for visualization) and the lines depict correlations for each condition (two-sided tests, not corrected for multiple comparisons). b,d, The 
lines depict slopes derived from multiple linear regression models (two-sided omnibus tests). The error bands indicate the 95% CIs.
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results support the idea that older adults are more likely to forget 
numerical risk information but personalized elements can elicit 
long-term intervention effects.

Taken together, our results suggest that certain strategies are 
more effective for inducing longer-term increases in perceived 
risk for older adults. Although older adults may be more prone to 
forgetting numerical information, a personalized episodic simula-
tion may enhance both learning retention and information-seek-
ing behaviors over time. Overall, both of these mechanisms may 
contribute to the beneficial effects of our intervention. Our results 
are generally consistent with the fundamental tenets of SST, which 
posits that older adults are more motivated to reinforce social 
connections and seek information that is personally relevant or 
emotionally meaningful11,12,25. Imagining a personalized scenario 
that connects information with existing semantic and episodic 
memories may be an effective way to make risk information more 
memorable for older adults. Personalized interventions situate risk 
information in context, drawing on social connections to enhance 
salience. Our results also align with previous studies on episodic 
simulation, which have shown that imagining future scenarios 
can influence decision-making28, self-regulation30,31 and likelihood 
judgments34,35. Episodic simulations are most effective when they 
are vivid31, self-relevant33, emotional39 or repeatedly imagined39 and 
personalized interventions can target all of these elements. Our 
findings bridge theoretical insights from these two literatures to 
show that older adults are particularly responsive to personalized 
episodic simulations.

Throughout the course of the COVID-19 pandemic, Americans 
have underestimated the risk of engaging in many different everyday 
activities6. On average, our personalized intervention encouraged 
older adults to be more risk-averse, reporting greater subjective per-
ceived risk of engaging in various everyday activities (for example, 
dining in a restaurant). In the context of the COVID-19 pandemic, 
instilling caution and risk-averse attitudes offers clear benefits 
for public health, especially for at-risk groups like older adults. 
However, for younger adults, an overall increase in risk-aversion 
(regardless of actual local risk levels) may not be a desirable out-
come. We also found that our intervention improved the accuracy 
of risk-related beliefs in adults bidirectionally across the life span. 
The personal and impersonal simulation conditions were both 
effective at realigning perceived risk with actual risk, successfully 

mitigating risk underestimation and overestimation6. However, the 
personalized intervention tended to increase perceived risk in older 
adults, regardless of their baseline misestimation bias. Overall, the 
findings reported in this article demonstrate that different interven-
tion strategies may be needed to meet the needs of older adults: an 
intervention that considers cognition, motivation and risk tolerance 
can encourage caution in older adults who are at higher risk of seri-
ous health outcomes.

In this study, we measured subjective perceived risk of viral 
transmission associated with various everyday activities. Although 
this approach offers a generalized insight into risk perception in 
everyday settings, there are several limitations. The true risk lev-
els of these everyday scenarios are not known and can vary widely 
depending on the circumstances. Ventilation, mask-wearing, sani-
tation, crowding and vaccination rates all contribute to the true risk 
level of a situation. Additionally, an individual’s risk factors (for 
example, preexisting health conditions, age, vaccination status) also 
influence perceived risk. Overall, our measures of subjective per-
ceived risk and prevalence-based exposure risk are useful heuristics 
for communicating the risk of virus exposure; however, the exact 
likelihood of viral transmission and the severity of subsequent ill-
ness depend on the circumstances and the participants involved.

Although we conducted our study in the context of the COVID-19  
pandemic, our findings may be broadly relevant to other health-
related challenges. For example, annual influenza outbreaks pose a 
recurring health risk for older adults. Relative to their younger coun-
terparts, older adults are far more likely to experience severe health 
complications due to the seasonal flu and they are far more likely to 
die because of it40. The seasonal flu vaccination is a readily available 
and effective means of reducing health-related complications and 
death in older adults. Personalized episodic simulations that target 
risk beliefs about the seasonal flu might encourage older adults to 
get the vaccine each year. For example, messages promoting the flu 
vaccine could prompt individuals to imagine experiencing illness 
versus well-being for themselves and close others. Incorporating 
personalized and socially relevant elements could also improve 
communication of information about other health-related deci-
sions for older adults (for example, regarding lifestyle changes or 
medical procedures). Healthcare providers and policymakers could 
emphasize practical and personalized messaging to communicate 
information about risks to older adults. Future research can further 
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Fig. 3 | testing the effects of age and episodic simulation (personal, impersonal and unrelated) on change in information-seeking about local COVID-19  
risk. a, Older adults in the personal simulation condition reported increases in independent information-seeking about local risk statistics during the 
post-intervention delay period (personal: r(156) = 0.22, 95% CI = 0.07–0.36, P = 0.006; impersonal: r(163) = −0.11, 95% CI = −0.26 to 0.04, P = 0.149; 
unrelated: r(169) = −0.06, 95% CI = −0.21 to 0.09, P = 0.441). b, Model-derived slope estimates (standardized variables) corresponding to the raw 
data depicted in a, depicting the effect of age on change in information-seeking after controlling for prediction error and delay duration. There was an 
interaction between simulation condition and age (continuous) (F(2,475) = 5.92, P = 0.003). The points depict individual scores (jittered for visualization). 
The lines depict correlations for each condition (two-sided tests, not corrected for multiple comparisons). The error bands indicate the 95% CIs.
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explore these possibilities to apply episodic simulation to improve 
other health-related outcomes.

Methods
This study is part of a larger project on risk perception during the COVID-19 
pandemic. Other results from this larger project have been reported elsewhere6. 
The study was approved by the Duke University Health System institutional review 
board (protocol no. 00101720). Participants provided informed consent by reading 
a description of the online study and clicking a button that affirmed agreement. 
The design of the intervention was preregistered and age-related analyses were 
included under planned exploratory analyses (https://osf.io/6fjdy).

Participants. We recruited a nationally representative sample of 816 current US 
residents (stratified by age, sex and ethnicity to approximate the demographic 
makeup of the nation). Participants were recruited via Prolific, an online testing 
platform (https://www.prolific.co/). Prolific curates nationally representative 
samples by inviting selected participants to complete the study, depending on their 
demographic characteristics. The demographic characteristics of the total sample 
recruited by Prolific were as follows: 48.7% men, 51.3% women; 14.3% between the 
ages of 18 and 27, 18.9% between the ages of 28 and 37, 16.4% between the ages 
of 38–47, 16.6% between the ages of 48 and 57 and 31.6% between the ages of 58 
and 81; 74.4% White, 13.5% Black, 6.8% Asian, 3.0% mixed and 2.3% other. We 
excluded 88 participants for the following preregistered reasons: missing COVID-19  
statistics for their location (27); failing an attention check (27); or providing 
off-topic or excessively short written responses to the episodic simulation task 
(for example, answering a prompt for 2–3 sentences with only a few words) 
(34). Additionally, 189 participants completed a control condition (unguided 
exploration) that was discussed in a separate report6 but was not relevant to the 
present analyses. The unguided exploration condition did not include the episodic 
simulation task or the risk estimation task. The primary goal of the present study 
was to compare the efficacy of the different simulation conditions across the adult 
life span, so the unguided exploration condition was not relevant for this research 
question. After these exclusions, the final sample consisted of 545 participants. 
Although age was included as a continuous variable in our primary statistical 
analyses, we binned participants into three age groups for a follow-up analysis and 
data visualization. The sample sizes of these age groups were as follows: young 
adults (ages 18–39, session 1 n = 238, session 2 n = 205), middle-aged adults (ages 
40–59, session 1 n = 189, session 2 n = 176) and older adults (ages 60–81, session 1 
n = 118, session 2 n = 113).

Procedure. Survey. To assess subjective perceived risk, we asked participants to rate 
the riskiness (due to COVID-19) of engaging in 15 different activities in their local 
community using a 5-point Likert-type scale (1 = not at all risky, 5 = extremely 
risky). Activities included picking up takeout, grocery shopping (indoors, masked), 
exercising in a gym (indoors, no mask), dining in a restaurant (indoors, no mask) 
and going to a bar or club (indoors, no mask). We averaged ratings for the 15 
items to calculate a composite score of perceived risk. Participants completed this 
subjective risk assessment three times: before the intervention; immediately after 
the intervention (session 1); and 1–3 weeks after the intervention (session 2). We 
calculated within-subject change scores (post-intervention − baseline) for each 
testing session to assess the effect of the intervention on perceived risk. To assess 
independent information-seeking, we also asked participants to report how much 
their COVID-related media consumption habits had changed during the post-
intervention delay period. Participants rated change in information-seeking about 
local COVID-19 risk statistics on a 5-point Likert scale (1 = much less than usual, 
5 = much more than usual).

Episodic simulation task. The episodic simulation task involved guided imagination 
through one of three scenarios that illustrated the potential consequences of 
risky decisions. During the simulation, participants were instructed to visualize 
events and details, then type responses in a text box. Participants were randomly 
assigned to one of three episodic simulation conditions in a between-subject 
design: the personal simulation (session 1: n = 181, session 2: n = 158); impersonal 
simulation (session 1: n = 180, session 2: n = 165); or unrelated simulation 
(session 1: n = 184, session 2: n = 171). In the personal simulation, participants 
imagined themselves hosting a dinner party in their home with four specific 
close others (for example, friends or neighbors) as guests. Participants identified 
each guest by first name and/or relationship (for example, ‘my sister Maria’), then 
visualized the guests and setting (for example, the dining room) in as much detail 
as possible. In this scenario, a guest began exhibiting symptoms of COVID-19 
during dinner. The guest later confirmed a diagnosis and was hospitalized. The 
host then informed the other dinner party guests of the exposure and eventually 
also became ill with COVID-19. The impersonal simulation depicted a fictional 
character and his friends undergoing the same scenario. The unrelated simulation 
described a scenario that was thematically related (a story about rabbits falling ill 
after eating rotten vegetables) but did not include any personalized or COVID-
related elements. The full text for all simulation conditions is provided in the 
Supplementary Information (Episodic simulation text).

Risk estimation task. After the episodic simulation, participants completed the 
risk estimation task, which involved estimating numerical risk levels in their 
local community. Participants received a brief tutorial about risk and probability, 
then were instructed to think about events of seven different sizes (5, 10, 25, 50, 
100, 250 and 500 people) that could happen in their location. For each event size, 
participants estimated the probability (0% = impossible ... 100% = definitely) that 
at least one of the people attending the event was infected with COVID-19. After 
estimating the risk levels for all event sizes, participants received veridical feedback 
about actual risk probabilities. Actual risk values were calculated based on the 
prevalence of active COVID-19 cases in each participant’s county of residence41. 
We calculated the information prediction error as a measure of misestimation, the 
average discrepancy between estimated and actual risk values across event sizes6.

Statistics. Statistical analyses were conducted using multiple linear regression. 
Continuous variables were standardized before submission to multiple linear 
regression. Factor variables for conditions were effect-coded. Visual inspection 
of histograms indicated that several variables exhibited high kurtosis, with some 
extreme values at both tails of the distribution. As a result, residuals from fitted 
models were larger for values at the tails. To correct for high kurtosis and meet 
the assumption of normality, we winsorized extreme values to the 5th and 95th 
percentiles. The variable for change in perceived risk (session 1) was winsorized. 
As reported in detail elsewhere, winsorization improved model fits but did 
not change the statistical significance of our findings6. Additionally, we log-
transformed the variable for actual risk (that is, local case prevalence) to account 
for skewing. Other variables were not transformed because distributions were 
approximately normal. Figures were produced using the ggplot2 (ref. 42) v.3.3.2 and 
sjPlot43 v.2.8.6 packages.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw and cleaned data are provided online via the Open Science Framework 
(https://osf.io/35us2/)44. Open-ended written responses to the episodic simulation 
have been omitted from the raw data to protect participant privacy and because 
personalized scenarios may include identifiable data. The full set of written 
responses from the episodic simulation task can be provided upon reasonable 
request, with institutional review board approval.

Code availability
Statistical analyses were conducted using multiple linear regression in R v.4.0.3, 
implemented with RStudio v.1.3.1093. All scripts are provided online via the 
Open Science Framework44. These scripts reproduce all data cleaning procedures, 
analyses and plots used to generate the results reported in the manuscript.
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