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Significance

Imperative motivation helps us 
address urgent goals, such as 
escaping a threat or winning a 
competition. However, 
imperative motivation can 
constrain attention and memory. 
Conversely, interrogative 
motivation supports curiosity, 
exploration, and memory 
formation for future goals. Here, 
we tested key predictions from 
this theoretical framework: We 
varied the cover stories before a 
learning task to induce either 
imperative or interrogative 
motivational states, thereby 
influencing both reinforcement 
learning and subsequent 
memory. Our results are relevant 
to interventions designed to 
motivate immediate actions or 
enhance long-term memory, 
such as in education, behavior 
change, clinical practice, and 
science communication. Induced 
motivational states may shift 
cognitive and neural processing 
to support one’s goals, enhancing 
attention, performance, learning, 
or memory.
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Motivation influences goals, decisions, and memory formation. Imperative motivation 
links urgent goals to actions, narrowing the focus of attention and memory. Conversely, 
interrogative motivation integrates goals over time and space, supporting rich memory 
encoding for flexible future use. We manipulated motivational states via cover stories for 
a reinforcement learning task: The imperative group imagined executing a museum heist, 
whereas the interrogative group imagined planning a future heist. Participants repeatedly 
chose among four doors, representing different museum rooms, to sample trial-unique 
paintings with variable rewards (later converted to bonus payments). The next day, partic-
ipants performed a surprise memory test. Crucially, only the cover stories differed between 
the imperative and interrogative groups; the reinforcement learning task was identical, and 
all participants had the same expectations about how and when bonus payments would 
be awarded. In an initial sample and a preregistered replication, we demonstrated that 
imperative motivation increased exploitation during reinforcement learning. Conversely, 
interrogative motivation increased directed (but not random) exploration, despite the cost 
to participants’ earnings. At test, the interrogative group was more accurate at recognizing 
paintings and recalling associated values. In the interrogative group, higher value paint-
ings were more likely to be remembered; imperative motivation disrupted this effect of 
reward modulating memory. Overall, we demonstrate that a prelearning motivational 
manipulation can bias learning and memory, bearing implications for education, behavior 
change, clinical interventions, and communication.

motivation | reinforcement learning | decision making | memory | reward

Memories are not veridical records of our experiences, but are instead influenced by our 
goals and predictions (1–3). In daily life, goals are integrated over time and space, with 
consequences for motivational states and for learning and memory. For example, the 
prospect of pleasant discoveries may motivate a hiker to explore a trail and remember 
many details of the experience. In contrast, if faced with a dangerous wildlife encounter, 
the hiker would be motivated to address or escape the threat, constraining attention and 
memory to goal-relevant details. Similarly, the goal of reaching the summit of a hike can 
supersede smaller incidental pleasures. Like threat, a reward imperative that commands 
single-minded attainment of an immediate goal would be expected to yield similarly sparse 
representations of the episode in memory. Likewise, in educational contexts, learning may 
be motivated by intrinsic curiosity, the desire to achieve good grades, or the fear of failure. 
Even objectively positive incentives can engage motivational states marked by rigidity, 
anxiety, or “choking under pressure,” producing behavioral and memory outcomes that 
look similar to learning under threat (4–7). Thus, the prospect of rewards can induce 
distinct motivations with potential consequences for learning and memory (8, 9).

The idea that motivation influences both immediate decisions and longer term memories 
is intuitive. Yet, the impact of different motivational states on decision-making, memory, 
and the balance between these cognitive processes has yet to be demonstrated. We have 
proposed a theoretical framework of motivational states from which we here address these 
outstanding questions (10–13). According to this framework, motivational states regulating 
memory formation can be classified as interrogative or imperative, with both behavioral and 
neuromodulatory mechanisms. Interrogative motivational states are associated with broad 
attention and expansive information-seeking, which supports learning associations, devel-
oping cognitive maps, and, putatively, attaining future goals. Imperative motivational states 
are elicited by a salient, urgent goal, yielding restricted information-seeking and memory 
that efficiently represents predictors of the imperative goal. We posit that interrogative and 
imperative motivational states would have diverging consequences for memory formation 
due to underlying neural mechanisms (13). Whereas interrogative motivational states engage 
ventral tegmental area-hippocampal-prefrontal circuitry to support learning details and 
associations for flexible future behavior (2, 10, 14), imperative motivational states engage 
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amygdala-cortical-medial temporal lobe circuitry to form sparse, 
decontextualized memories restricted to goal-relevant information 
(4, 12, 15–17).

The imperative/interrogative framework bridges ideas from past 
research on decision-making and emotional memory. Prior rein-
forcement learning studies have investigated tradeoffs between 
choices that explore options and resolve uncertainty versus choices 
that exploit reliable predictors of reward (18–24). Over a long time 
horizon, exploration may be more advantageous for gathering 
information about different options to maximize rewards over 
time (18); when participants have more opportunities to sample 
information, they engage in more exploration and make noisier 
choices (25). Conversely, exploitation might be the optimal 
approach for quickly earning rewards in a stable environment 
where the options are known. Balancing these strategies is impor-
tant when the environment is uncertain or unstable; the optimal 
choice at a given time may not be the best option in the future. 
Prior studies on the explore/exploit tradeoff have investigated 
individual/group differences (20, 26, 27), used pharmacological 
modulation (28–30), or manipulated the number of opportunities 
for making choices (25), but to our knowledge have not manip-
ulated motivational states via narrative task framing.

A separate line of research on emotional memories has contrasted 
positively and negatively valenced stimuli to examine consequences 
for memory. Strong emotions and negatively valenced stimuli can 
cause memory narrowing, which enhances memory for goal-relevant 
central details but impairs memory for peripheral details (15, 31–34). 
Likewise, stressful situations can bias decision-making, reduce behav-
ioral flexibility, and impair learning about stimulus–outcome asso-
ciations that predict threat (1, 35). The imperative/interrogative 
framework relates motivational states to brain states to explain how 
they synergistically affect information-seeking behavior and the 
mechanisms underlying memory formation. We predicted that 
imperative and interrogative motivational states would shift the bal-
ance between exploration and exploitation during reinforcement 
learning, while also impacting the contents and qualities of subse-
quent memory.

The interrogative/imperative framework generates two predic-
tions relating goals to choice behavior and long-term memory. 
First, we predicted that motivational states would regulate the 
balance between exploration and exploitation. In reinforcement 
learning tasks, interrogative motivational states should encourage 
directed exploration to strategically resolve uncertainty, gather 
information, and develop a cognitive map (18, 23, 36). Conversely, 
imperative motivational states should prioritize exploitation to 
select options that reliably yield high rewards. We expected no 
effect of motivational state on random exploration (i.e., behavioral 
variability not aimed at resolving uncertainty) (18, 23, 36). 
Second, we predicted that motivational states would simultane-
ously bias long-term memory formation during reinforcement 
learning. Interrogative motivational states should enhance mem-
ory for associative details (e.g., incidental information that is asso-
ciated with reward), whereas imperative motivational states should 
impair memory for these details (i.e., memory narrowing).

In the present study, we provide an empirical demonstration 
that imperative and interrogative motivational states bias reward 
learning and subsequent memory. Unlike previous studies which 
contrasted rewards and threats, in our paradigm participants com-
pleted the exact same reinforcement learning task, for the same 
monetary incentives. Crucially, participants had the same expec-
tations about how bonus payments would be earned, and when 
those bonus payments would be awarded.

To induce imperative or interrogative motivational states during 
a reinforcement learning task, we introduced subtle distinctions 

in the cover story. Participants in the imperative condition (Sample 
1: N = 99, Sample 2: N =109) were instructed to imagine executing 
a heist at an art museum (emphasizing urgent performance goals), 
whereas participants in the interrogative condition (Sample 1:  
N = 109, Sample 2: N = 111) were instructed to imagine planning 
a future heist (emphasizing learning for future goals). After reading 
one of the two cover stories, participants then completed a rein-
forcement learning task that involved searching a virtual art 
museum for valuable paintings (Fig. 1A). On each trial, partici-
pants chose one of four colored doors (representing different 
rooms of the museum), sampled one trial-unique painting, and 
learned the value of the painting (Fig. 1B). The underlying reward 
distributions associated with each door slowly drifted over the 
course of the experiment to encourage ongoing learning (Fig. 1C). 
The next day, participants returned to complete a surprise memory 
test for the paintings from the reinforcement learning task 
(Fig. 1D). Participants reported whether each painting was old or 
new and rated their confidence. For paintings identified as old, 
participants then recalled the value of the painting and the door 
that had been associated with the painting.

Importantly, the only difference between the two conditions 
was the cover story. The reinforcement learning task, the next-day 
memory test, and the delivery of participant payments were 
equated across conditions (Fig. 1A). Prior to the reinforcement 
learning task, participants in both conditions were informed that 
the points (painting values) earned during the task on the first day 
would be converted to a bonus payment that they would receive 
at the end of the second study session the following day. We 
hypothesized that imperative motivation would increase exploita-
tion and enhance performance during reinforcement learning, but 
impair memory formation. Conversely, we expected that inter-
rogative motivation would increase directed (but not random) 
exploration during reinforcement learning and enhance subse-
quent memory performance.

We collected an initial exploratory sample (Sample 1), fol-
lowed by a preregistered replication sample (Sample 2). In the 
replication sample, we placed additional emphasis on the infor-
mation about how participants could earn bonus payments, and 
when they would receive these earnings. In sample 1, this infor-
mation was included in the consent form; in sample 2, we also 
emphasized this information in large text on a subsequent 
instruction page, presented between the consent form and the 
cover story. This change ensured that all participants were fully 
aware that the imperative and interrogative cover stories did 
not determine how or when performance bonuses would be 
awarded. The task was otherwise unchanged in sample 2. Note 
that because we had clear directional hypotheses for sample 2, 
we preregistered one-tailed statistical tests and conducted power 
analyses to determine sample size accordingly. Therefore, 
P-values reported are two-tailed for all sample 1 statistical tests, 
but one-tailed for sample 2 statistical tests with preregistered 
directional hypotheses (exploratory analyses in sample 2 use 
two-tailed tests).

Results

Reinforcement Learning. First, we tested whether performance on 
the reinforcement learning task differed between conditions. Using 
linear mixed-effects regression, we predicted trial-by-trial points 
earned from condition (imperative vs. interrogative), including 
random intercepts to account for within-subject variance. During 
task counterbalancing, participants were randomly assigned to one 
of three predetermined drifting reward schedules (22); therefore, 
we also included a covariate of no interest for the reward schedule D
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(version 1, 2, or 3). The model also included a covariate of no 
interest for the learning trial number, to account for fatigue or 
strategy changes over time.

In both samples, participants in the imperative condition earned 
more points than participants in the interrogative condition (sam-
ple 1: β = 0.07, 95% CI [0.03, 0.11], t = 3.39, two-tailed  
P < 0.001; sample 2: β = 0.06, 95% CI [0.03, 0.10], t = 3.63, 
one-tailed P < 0.001). We also tested a generalized linear 
mixed-effects model with optimal choices as the dependent variable 
(i.e., binary variable indicating whether or not the participant 
chose the door with the highest value). Imperative condition par-
ticipants made more optimal choices than interrogative condition 

participants (sample 1: β = 0.15, 95% CI [0.06, 0.24], z = 3.24, 
two-tailed P = 0.001; sample 2: β = 0.08, 95% CI [0.00, 0.16],  
z = 1.89, one-tailed P = 0.029).

We also conducted two control analyses to ensure that partic-
ipants successfully learned from feedback (SI Appendix, Evidence 
of Reinforcement Learning). First, we tested whether the number 
of optimal choices for each participant was greater than chance 
(chance performance would be 25/100 trials, if participants chose 
among the four doors randomly). In both samples, we observed 
that the number of optimal choices was well above chance in both 
conditions. Second, we tested whether trial-by-trial reward feed-
back influenced subsequent choices. In both conditions, we found 

$78

x 100 trials

Confidence Rating

Old

How much money was 
this painting worth?

$70

$0 $100

In which room did you see this painting?

New

B C

D

Drifting Reward Distributions

Next-Day 
Memory Test

Imperative
Cover Story

Interrogative
Cover Story

Reinforcement
Learning Task

Recognition
Memory Test

Bonus
Awarded

A

1-Day 
Delay

Value of painting 
from yellow door

on trial 25

Fig. 1. Overview of paradigm. (A) Participants were randomly assigned to read either the imperative or interrogative cover story before completing a reinforcement 
learning task; the task was identical in both conditions. After a 1-d delay, participants returned to complete a surprise recognition memory test. Participants 
received their compensation and performance bonuses (earned during the reinforcement learning task) at the end of the study, regardless of condition. (B) On 
each trial of the reinforcement learning task, participants chose one of four colored doors. Participants viewed one painting sampled from the room and saw 
the value. (C) The average rewards from each of the doors drifted over time. Line colors correspond to door colors. (D) During the memory test, participants 
viewed old and new paintings and made recognition judgements with confidence ratings. For items endorsed as old, participants were also asked to recall the 
value of the painting and the associated door.
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that greater rewards increased the likelihood of repeating the pre-
vious choice, in both samples. Further information about these 
analyses is provided in SI Appendix, Evidence of Reinforcement 
Learning. Taken together, these two control analyses provide con-
vergent evidence that participants in both conditions successfully 
engaged in reinforcement learning. Overall, we found that par-
ticipants in the imperative condition earned more points (Fig. 2A) 
and made more optimal choices during reinforcement learning 
(Fig. 2B), though participants in both conditions successfully 
performed the reinforcement learning task.

We then compared choice behavior across the two conditions 
by using reinforcement learning models. We developed eight 
different computational models to fit trial-by-trial choice behav-
iors in the reinforcement learning task using hierarchical 
Bayesian modeling (Methods, Computational Modeling). Each 
model was comprised of a learning rule that governed how par-
ticipants updated the expected value of the chosen door after 
observing a reward on a given trial (learning rate), and a choice 
rule that integrated various kinds of value estimates that may 
influence choices (reward-based expected value, uncertainty-based 
directed exploration bonus, and choice history-based persever-
ation bonus).

We compared two learning rules: 1) a delta learning rule that 
updates expected value of the chosen door by a constant learning 
rate on every trial and 2) a Bayesian learning rule that updates 
expected value by a learning rate proportional to the trial-by-trial 
estimated uncertainty of the chosen door. Each learning rule was 

combined with one of four choice rules. The first choice rule 
included an inverse temperature parameter to model exploitation, 
the tendency to select doors based on expected values to maximize 
reward gained. The second choice rule added an additional param-
eter for perseveration, the tendency to repeat the choice made on 
the previous trial. The third choice rule consisted of an inverse 
temperature parameter and a parameter for directed exploration, the 
tendency to sample doors with high estimated uncertainty to 
gather information and resolve uncertainty. The fourth choice rule 
included both additional parameters for perseveration and directed 
exploration. Model comparison results showed that the model with 
a delta learning rule and the fourth choice rule (including param-
eters for inverse temperature, directed exploration, and persever-
ation) had the highest predictive accuracy, outperforming all other 
models (SI Appendix, Fig. S1).

Using the best-fitting model, we tested whether trial-by-trial 
choices differed between conditions. For each participant, we 
extracted model-derived expected reward values (Fig. 3A) and 
uncertainty values (Fig. 3B) for each door on each trial, and 
classified each choice based on whether it was exploitation 
(choosing the door with the highest expected value), directed 
exploration (choosing the door with the highest uncertainty), or 
random exploration (choosing one of the other two doors). In 
order to make pairwise comparisons between conditions for each 
choice category (exploitation, directed exploration, and random 
exploration), we conducted three separate Wilcoxon rank sum 
tests (a nonparametric alternative to two-sample t tests since the 
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Fig. 2. Comparing reinforcement learning performance 
across conditions. Boxplots depict data distributions 
(center line = median; box limits = upper and lower 
quartiles; whiskers = 1.5× interquartile range; outer 
points = outliers; center points = mean). In both samples, 
participants in the imperative condition earned more 
points (A) and made more optimal choices (B) than 
participants in the interrogative condition. *P < 0.05, 
***P < 0.001.D
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normality assumption was violated) to predict number of choices 
for each choice type, respectively, from condition (imperative vs. 
interrogative).

In both samples, participants in the imperative condition made 
more exploitation choices (sample 1: W = 6326.6, two-tailed  
P = 0.001, Cohen’s d = 0.50, 95% CI [0.22, 0.78]; sample 2:  
W = 7272.5, one-tailed P = 0.005, Cohen’s d = 0.34, 95% CI [0.08, 
0.61]) and fewer directed exploration choices (sample 1:  
W = 4,001, two-tailed P = 0.015, d = −0.51, 95% CI [−0.80, 
−0.23]; sample 2: W = 4,954, one-tailed P = 0.010, d = −0.44, 95% 
CI [−0.70, −0.17]) compared to participants in the interrogative 
condition (Fig. 3 C and D). As predicted, the number of random 
exploration choices did not differ between conditions (sample 1: 
W = 4,400, two-tailed P = 0.215, d = −0.24, 95% CI [−0.52, 0.04]; 
sample 2: W = 5,458, two-tailed P = 0.252, d = −0.08, 95% CI 
[−0.34, 0.19]). These differences in choice behavior across imper-
ative and interrogative conditions were confirmed by results from 
multinomial logit regressions (SI Appendix, Tables S1 and S2).

Note that in the reinforcement learning task, choosing among 
the four doors was self-paced. In contrast, the feedback page (dis-
playing the painting and associated reward value) was presented 
for a fixed duration. In exploratory analyses, we examined whether 

choice reaction time differed across conditions and choice types 
(exploitation, directed exploration, and random exploration). 
Reaction time analyses are reported in SI Appendix, Reaction Time; 
there were no replicable differences in reaction time.

Next, we compared the imperative and interrogative conditions 
in terms of group-level learning measures. We examined the effect 
of condition on reinforcement learning based on the estimated 
group mean difference hyperparameter posterior distribution for 
the key learning rule parameter learning rate (Dα). Individual dif-
ferences in this learning rate parameter reflect differences in sen-
sitivity to prediction error (i.e., how much one adjusts expectations 
in response to feedback). Whereas the trial-level choice type analysis 
above allowed us to compare the number of exploitation and explo-
ration choices made by participants in the imperative and interrog-
ative conditions, the group difference hyperparameter posterior 
distribution pools uncertainty across all the trials and across all 
participants within each condition to provide an overall estimate 
of how reward learning tendencies—namely how much participants 
learned from observed prediction errors to adjust their reward 
expectations for subsequent trials—differed between conditions.

In sample 1, compared to those in the interrogative condition, 
participants in the imperative condition had a significantly higher 

A B

C D

Fig. 3. Model-derived classification of choices. Lines depict trial-by-trial expected value (A) and uncertainty (B) for each of the four doors (line colors correspond 
to door colors) for one example interrogative participant. Arrows note example trials classified as “exploitation” (highest expected value), “directed exploration” 
(highest uncertainty), and “random exploration” (neither highest expected value nor highest uncertainty). Group differences by choice type are shown in C and 
D. Box-and-whisker plots show choice distributions (center line = median; box limits = upper and lower quartiles; whiskers = 1.5× interquartile range; outer 
points = outliers; center points = mean; error bars = SEM). In both samples, participants in the imperative condition made more exploitation choices, whereas 
participants in the interrogative condition made more directed exploration choices. *P < 0.05. **P < 0.01.
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learning rate; the 95% highest density continuous interval of the 
posterior distribution of the group difference hyperparameter 
(Dα) was positive and did not overlap with 0 (Sample 1: 95% CI 
[0.0553, 0.1851]; Fig. 4A). This effect was weaker in sample 2, 
where the 95% interval of the posterior distribution was mostly 
positive but did overlap with 0 (Sample 2: 95% CI [−0.0113, 
0.1122]; Fig. 4B). In other words, participants in the imperative 
condition tended to be more sensitive to prediction error, though 
this effect was stronger in sample 1 than in sample 2.

We also took the same approach to examine the effect of con-
dition on three key choice rule parameters in the model: inverse 
temperature (Dβ), directed exploration (Dφ ϕ), and perseveration (Dρ; 
SI Appendix, Fig. S2). In both samples, the group-level results for 
inverse temperature and directed exploration were generally con-
sistent with the trial-level choice type analyses reported above; 
imperative group participants tended to show more exploitation 
during reinforcement learning, whereas interrogative group par-
ticipants tended to show more directed exploration. As the 
trial-level analyses offer similar but more sensitive measures of 
exploitation and directed exploration, we report the group-level 
analyses in SI Appendix. Additionally, we found that as expected, 
there was no group differences in the perseveration parameter, 
which reflects participants’ tendencies to repeat choices over time.

Overall, participants in the imperative condition earned more 
points, made more optimal choices, and made more exploitation 
choices during reinforcement learning. Conversely, participants 
in the interrogative group earned fewer points, made fewer optimal 
choices, and made more directed exploration choices. In sample 
1, we also found that participants in the imperative condition 
showed higher learning rates than participants in the interrogative 
condition; this effect was in the expected direction in sample 2, 
but weaker and nonsignificant.

Recognition Memory. Next, we examined performance on the 
next-day memory test. Using generalized linear mixed-effects 
regression, we compared trial-by-trial recognition accuracy (0 = 
incorrect, 1 = correct) for paintings (including both old stimuli 
and novel lures) across conditions (Imperative vs. Interrogative). 
The model included covariates of no interest for the reward 
schedule (version 1, 2, or 3) and the duration of the delay (in 
hours) between the learning session and test session (all were 

overnight delays, approximately 24 h between learning and 
test). The model included random intercepts to account for 
within-subject variance. In both samples, recognition accuracy 
was significantly higher in the interrogative condition than in 
the imperative condition (sample 1: β = −0.08, 95% CI [−0.13, 
−0.04], z = −3.48, two-tailed P < 0.001; sample 2: β = −0.04, 
95% CI [−0.08, −0.01], z = −2.01, one-tailed P = 0.022) (Fig. 5 
A and B).

We then modified the model described above to investigate 
reward modulation of memory, focusing on old stimuli. In addi-
tion to the parameters described in the model above, we included 
parameters for reward (continuous variable, the value associated 
with a painting during the learning phase) and the interaction 
between reward and condition (imperative vs. interrogative). We 
also added a covariate of no interest for the learning trial number, 
accounting for potential fatigue or primacy effects (note that this 
variable was not included in the previous model because it could 
not be applied to new stimuli). We predicted that reward would 
enhance memory, but imperative motivation would disrupt this 
effect.

In both samples, reward significantly enhanced recognition 
memory for the paintings (sample 1: β = 0.07, 95% CI [0.04, 
0.11], z = 4.00, two-tailed P < 0.001; sample 2: β = 0.03, 95% 
CI [0.00, 0.06], z = 1.83, one-tailed P = 0.034). Crucially, this 
effect of reward enhancing memory depended on condition. In 
both samples, there were significant interactions between reward 
and condition (sample 1: β = −0.04, 95% CI [−0.07, −0.001],  
z = −2.05, two-tailed P = 0.040; sample 2: β = −0.03, 95% CI 
[−0.06, −0.001], z = −1.77, one-tailed P = 0.038).

As expected, follow-up tests indicated that reward significantly 
enhanced memory in the interrogative condition (sample 1:  
β = 0.11, z = 4.39, two-tailed P < 0.001; sample 2: β = 0.06,  
z = 2.58, one-tailed P = 0.005), but not in the imperative condi-
tion (sample 1: β = 0.04, z = 1.34, two-tailed P = 0.175; sample 
2: β = 0.001, z = 0.05, two-tailed P = 0.960). In other words, 
high-value items were prioritized in memory, but only under an 
interrogative motivational state (Fig. 6). All other parameter esti-
mates are reported in SI Appendix, Tables S3 and S4.

In a supplemental analysis, we also investigated whether rec-
ognition accuracy, condition, choice type, and reward were related 
to confidence ratings provided during the memory test. 

A B

Group Difference (Imperative – Interrogative) Parameter Estimate Posterior Distributions

Higher 
learning rate 
in Imperative 

group

no significant 
group difference

Imperative > 
Interrogative

Interrogative > 
Imperative

Learning Rate

GGrroouupp DDiiffffeerreennccee iinn LLeeaarrnniinngg RRaattee ((SSaammppllee 11)) GGrroouupp DDiiffffeerreennccee iinn LLeeaarrnniinngg RRaattee ((SSaammppllee 22))

Learning Rate
Imperative > 
Interrogative

Interrogative > 
Imperative

Fig.  4. Group difference (imperative condition – interrogative condition) hyperparameter posterior distributions for learning rate (Dα) of the best-fitting 
model. The black dots represent the mean, thick red lines the 80% highest density continuous intervals, and thin red lines the 95% intervals. Dashed black lines 
represent 0 (i.e., no difference between conditions). In sample 1, learning rate was higher in the imperative condition than the interrogative condition (A), but 
this effect was not significant in sample 2 (B).D
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Participants were more confident in correct responses, but there 
were no other significant effects (SI Appendix, Recognition Memory 
Confidence).

Last, we also tested variants of the mixed-effects model described 
above to explore whether memory outcomes were related to indi-
vidual differences in choice behavior (inverse temperature, directed 
exploration, perseveration, and learning rate) or trial-wise esti-
mates of prediction error. There were no reliable effects depending 
on these parameters. These exploratory analyses are reported in 
detail in SI Appendix, Relating Reinforcement Learning Parameters 
to Memory and Tables S5–S8).

Corrected Recognition. Next, we investigated subject-level 
corrected recognition scores (d′). First, we used one-sample t 
tests to check whether corrected recognition was above chance 
performance. Average corrected recognition scores (d′) were well 
above chance (0) in both the imperative condition (sample 1: M 
= 0.34, t(82) = 7.96, P < 0.001, Cohen’s d = 0.87, 95% CI [0.62, 
1.13]; sample 2: M = 0.27, t(104) = 6.91, P < 0.001, Cohen’s d 
= 0.67, 95% CI [0.46, 0.89]) and in the interrogative condition 
(Sample 1: M = 45.6, t(74) = 9.01, P < 0.001, Cohen’s d = 1.04, 
95% CI [0.76, 1.33]; sample 2: M = 0.39, t(97) = 8.82, P < 0.001, 
Cohen’s d = 0.89, 95% CI [0.66, 1.13]).

Second, we used linear regression to test whether average cor-
rected recognition scores differed between conditions. This model 
included covariates of no interest for the reward schedule and 
delay to test. In both samples, there was weak evidence that d′ 

scores tended to be higher in the interrogative condition than the 
imperative condition (Sample 1: β = −0.15, 95% CI [−0.31, 0.02], 
t = −1.79, two-tailed P = 0.075; sample 2: β = −0.15, 95% CI 
[−0.29, 0.00], t = −1.97, two-tailed P = 0.050). Note that this 
analysis is less sensitive than the trial-wise recognition memory 
analyses reported previously; d′ scores for each subject were cal-
culated across trials.

Associative Memory. Next, we examined memory for painting–
value associations. Using linear mixed-effects regression, we 
predicted trial-by-trial value estimation error, defined as the 
discrepancy between estimated and actual values (for paintings 
correctly identified as “old”), from condition (imperative vs. 
interrogative). The model included covariates of no interest for 
the reward schedule, delay duration, and learning trial number 
(to account for potential fatigue or primacy effects), as well as 
random intercepts for subjects. In both samples, participants in the 
interrogative condition were more accurate at recalling painting–
value associations (Fig. 5 C and D); error scores were lower than 
in the imperative condition (sample 1: β = 0.06, 95% CI [0.01, 
0.10], t = 2.64, two-tailed P = 0.009; sample 2: β = 0.05, 95% 
CI [0.01, 0.09], t = 3.00, one-tailed P = 0.011).

Last, we modified the model described above to conduct an 
exploratory analysis, predicting trial-by-trial accuracy for scene–
door associations. There were no significant differences between 
the imperative and interrogative conditions in either sample 1 (β 
= −0.06, 95% CI [−0.18, 0.06], z = −0.95, two-tailed P = 0.340) 

A

B

Fig. 5. Memory outcomes across conditions. Boxplots 
depict data distributions (center line = median; box limits 
= upper and lower quartiles; whiskers = 1.5× interquartile 
range; outer points = outliers; center points = mean). In 
both samples, participants in the interrogative condition 
were significantly more accurate at recognizing paintings 
(A) and recalling associated values (B) on the next-day 
memory test. *P < 0.05, **P < 0.01, ***P < 0.001.
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or sample 2 (β = −0.01, 95% CI [−0.12, 0.11], z = −0.11, 
two-tailed P = 0.913). However, overall memory for painting–
door associations was very poor (sample 1: M = 14.4%, sample 
2: M = 13.3%), limiting our ability to detect potential effects on 
associative memory.

Discussion

In two samples, we demonstrated that a prelearning motivational 
manipulation influenced reinforcement learning and subsequent 
memory. We used cover stories to manipulate motivational states 
before a reinforcement learning task with trial-unique stimuli. 
Participants in the imperative condition were instructed to imagine 
executing an art museum heist, whereas participants in the inter-
rogative condition were instructed to imagine planning a future 
heist. Importantly, only the cover stories differed across conditions; 
all participants completed the exact same reinforcement learning 
task for the same monetary incentives. Participants in both con-
ditions were aware that their bonus payments would be deter-
mined by points earned during the reinforcement learning task.

Participants in the imperative condition tended to make more 
exploitative choices and earn more points during the reinforce-
ment learning task. Conversely, participants in the interrogative 
condition tended to make more directed exploration choices, 
despite the cost to their own earnings. The next day, we conducted 
a surprise memory test to assess recognition memory for 
trial-unique paintings previously shown during the reinforcement 
learning task. Participants in the interrogative condition demon-
strated better recognition memory and recall for associated values, 
as well as an effect of reward enhancing memory for high-value 
paintings. Conversely, participants in the imperative condition 
were less accurate, and showed no effect of reward modulating 
memory. We validated our key findings in a preregistered replica-
tion sample. Overall, we conclude that imperative and interrog-
ative motivational states bias choice behavior and memory 
formation in divergent ways, aligning cognitive processes with 
current goals.

Motivational States Influence Reinforcement Learning. Results 
from the reinforcement learning task demonstrated that the 
cover stories influenced choice behavior. Model-free analyses of 
reinforcement learning performance showed more exploitative 
tendencies in the imperative condition, as participants in the 
imperative condition earned more points and made more optimal 
choices during reinforcement learning in both samples. These 
results were consistent with model-based analyses of choice type. 

Using trial-by-trial values derived from reinforcement learning 
models, we identified exploitation choices (choosing to maximize 
reward) and directed exploration choices (choosing to resolve 
uncertainty). We found robust evidence that participants in 
the imperative condition made more exploitative choices and 
participants in the interrogative condition made more directed 
exploration choices; this finding was evident in both samples. 
In sample 1 we also observed that participants in the imperative 
group were more sensitive to prediction error (i.e., making larger 
adjustments to reward expectations in response to feedback), but 
this effect was weaker and nonsignificant in sample 2.

Exploitation and directed exploration were inversely related in 
our data, but these measures are not redundant. Model compar-
ison demonstrated that including a separate parameter for directed 
exploration tendencies accounted for additional variance in choice 
behavior that was not explained by exploitation alone (SI Appendix, 
Fig. S1). Importantly, directed exploration also contrasted with 
random exploration (choosing a door that was neither highest-value 
nor highest-uncertainty) in our trial-level choice analysis: Random 
exploration did not differ between the imperative and interrogative 
conditions in either sample. Although participants in the inter-
rogative condition were instructed to “explore the museum to plan 
a future heist,” they showed a specific increase in directed explo-
ration, not random exploration. In contrast, prior research has 
shown that increasing the time horizon of information seeking 
generally invigorates exploration and increases choice variance 
(25). Our results suggest that, rather than increasing general 
behavioral variability or invigorating exuberance, the interrogative 
cover story specifically motivated information seeking to resolve 
uncertainty about the environment.

Interrogative Motivation Enhances Memory Formation. 
The interrogative and imperative cover stories also influenced 
incidental memory of trial-unique paintings viewed during the 
reinforcement task. Importantly, the paintings were irrelevant 
to the reinforcement learning task; participants in both the 
imperative and interrogative conditions were aware that choosing 
among doors was important for obtaining rewards, whereas the 
specific paintings viewed did not inform choices. On a next-day 
memory test, participants in the interrogative condition showed 
significantly higher recognition accuracy for the paintings. In 
sample 2, we also observed that participants in the interrogative 
condition were more accurate at recalling the values associated 
with specific paintings.

Our results indicate that interrogative motivation enhanced 
memory formation, whereas imperative motivation disrupted the 

Fig. 6. Recognition memory was scaled by reward. Shaded 
bands indicate 95% CIs. Lines depict slope estimates from 
mixed-effects models predicting trial-wise recognition 
accuracy for old paintings. In the interrogative condition, 
reward modulated memory, such that high-value paintings 
were more likely to be remembered than low-value 
paintings. In contrast, this expected effect of reward on 
memory was eliminated in the imperative condition. This 
interaction effect replicated in sample 2. **P < 0.01, n.s. = 
not significant.
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effects of reward on memory. For participants in the interrogative 
condition, reward prioritized items in memory; high-value paint-
ings were more likely to be remembered, and low-value paintings 
were less likely to be remembered. This effect of reward modulating 
memory has been demonstrated in many prior studies (2, 14, 37).  
Strikingly, participants in the imperative condition did not show 
the expected effect of reward, corroborating our prior work (4, 
10). This evidence that imperative motivational states can disrupt 
reward modulation of memory offers an important caveat for 
incentivizing learning in daily life (e.g., offering rewards for good 
grades).

The reward enhancement of memory effect we observed in the 
interrogative condition relates to prior behavioral and neural evi-
dence that reward can automatically enhance episodic memory, 
independent of encoding strategy (38–41). Prior behavioral work 
has shown that memory for high-value items is enhanced even 
when the memory test itself is unrewarded (42). In our paradigm, 
the interrogative cover story led participants to think about plan-
ning for future rewards— this “planning” orientation aligns with 
prior evidence that midbrain dopamine mediates value-driven 
enhancement of memory, regardless of intentions to learn (2, 40). 
Similarly, other studies have shown that the hippocampus supports 
planning in multistep reward learning tasks (43, 44), and VTA 
neurons fire in anticipation of rewards (45, 46).

Overall, we found that imperative motivation increased exploit-
ative choices during reinforcement learning, enhancing short-term 
performance while impairing memory formation. Conversely, 
interrogative motivation increased directed exploration and 
enhanced memory formation, particularly for information asso-
ciated with reward. Crucially, participants in the interrogative 
condition made more exploratory choices and formed lasting 
memories, despite the personal cost of reducing their own reward 
earnings. The tradeoff between task performance and memory 
outcomes in the imperative and interrogative conditions aligns 
with prior research on the complementarity of reinforcement 
learning and episodic memory systems (47–50). We propose that 
imperative and interrogative motivational states offer distinct ben-
efits for short-term reward learning and longer term memory 
retention.

Imperative and Interrogative States Support Distinct Goals. 
Imperative and interrogative motivational states have advantages 
and disadvantages in different situations (11, 12, 16). Imperative 
motivation can support maximizing reward, escaping or 
confronting threats, or addressing urgent needs. However, 
imperative motivation can induce a narrow focus for attention 
and memory, thus producing sparse, decontextualized memories 
that are susceptible to overgeneralization (51, 52). Conversely, 
an interrogative motivational state can support future planning, 
flexible reconfiguration of knowledge, and drawing inferences. 
With a broader and less constrained focus, one can encode more 
information, learn associations, or develop a cognitive map. The 
imperative/interrogative theoretical framework unifies evidence 
from distinct literatures; prior studies have separately shown that 
manipulating task contexts (e.g., high- vs. low-reward incentives, 
reward vs. threat, gains vs. losses, stealing vs. buying, or single vs. 
sequential choices) can elicit different patterns in choice behavior, 
neural responses, skin conductance, and subsequent memory (10, 
25, 50, 53–60).

The imperative/interrogative framework (11, 12) also unifies 
some elements of the explore/exploit tradeoff with prior studies 
on promotion and prevention goals (61) and emotional memory. 
Promotion goals drive individuals to seek beneficial outcomes, 
whereas prevention goals motivate action to avoid negative 

outcomes. Framing risky decision-making tasks in terms of gains 
or losses can elicit differences in choice behavior (55, 62–64) and 
neural activation (65–67). Separately, research on emotional mem-
ories has demonstrated that strong emotions and negatively 
valenced stimuli can cause memory narrowing, prioritizing memory 
for goal-relevant central details while impairing memory for 
peripheral details (15, 31–34). Only a few studies have investi-
gated goal framing effects on memory formation (10, 68), one of 
which is our prior demonstration that prevention goal framing 
(perhaps inducing an imperative motivational state) disrupted an 
expected relationship between encoding and retrieval.

Other prior studies have manipulated participants’ perspectives, 
such as by instructing participants to read a story from the per-
spective of a burglar or a prospective home buyer (60). These 
differing perspectives can influence attention and encoding (60), 
as well as later recall (69) (i.e., shifting perspectives during recall 
prioritizes retrieval of distinct details). Our paradigm was distinct 
from these prior studies because participants were not explicitly 
instructed or incentivized to memorize information; the manip-
ulation of motivational states was separate from participants’ per-
sonal motivation to earn bonus payments. Future versions of our 
paradigm could vary whether participants think about stealing or 
buying, whether the goal is to earn rewards or avoid punishment, 
and whether outcomes are urgent or distant.

Synthesizing these disparate lines of research offers several the-
oretical advances. The imperative/interrogative framework: 1) cap-
tures the diverse effects of motivation on learning, decision-making, 
and subsequent memory, 2) draws on neuromodulatory evidence 
(11–13) to elucidate tradeoffs between neural systems for imme-
diate action and elaborated memory formation, and 3) transcends 
the dichotomy between positive and negative stimuli or outcomes. 
For example, this framework explains memory outcomes better 
than theories that consider emotional valence alone (15). An imper-
ative motivational state can be driven by either punishments or 
rewards, leading to avoidance or compulsive behavior, respectively. 
Conversely, morbid curiosity is an example of interrogative moti-
vation to learn about negatively valenced information (70, 71). 
The imperative/interrogative framework offers a perspective by 
bridging prior research in reinforcement learning, decision-making, 
and emotional memory, thus generating predictions for brain and 
behavior.

Limitations and Future Directions. Future research could 
build on our results by testing additional predictions of the 
imperative/interrogative framework. One prediction that we were 
unable to test is that interrogative motivation supports drawing 
inferences and applying memories to serve flexible future goals. 
In the present study, we showed that interrogative motivation 
enhanced recognition memory and associative memory for 
incidental information (paintings) paired with rewards. A key 
goal for future research is to test whether interrogative motivation 
supports generalization, inference, or adaptive memory updating, 
as predicted. For example, recent work has shown that reward 
reorganizes and clusters related memories, which may support 
flexible future use (72). A related prediction is that interrogative 
motivation may influence how the hippocampus integrates 
or differentiates between related stimuli, supporting adaptive 
memory (73). In ongoing work, we are investigating the neural 
correlates of choices and subsequent memory with this paradigm; 
fMRI data would enable investigation of hippocampal patterns.

Another limitation is that we employed a reinforcement learn-
ing task that involved reward probabilities that slowly drift over 
time; this necessitates ongoing learning and balancing exploration/
exploitation strategies. However, the drifting rewards did not fully D
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align with the cover story presented in the interrogative condition; 
planning a heist is difficult if one knows that rewards fluctuate 
over time. The present study also does not test reversal learning 
that occurs when reward contingencies suddenly change dramat-
ically. In future research, task variations with fixed reward sched-
ules or blocked designs could offer additional insight into the 
effects of imperative and interrogative motivation.

Additionally, the present study only tested memory after a 24-h 
delay. We chose this delay period to permit memory consolida-
tion—behavioral effects of reward on memory sometimes only 
emerge after a delay that permits consolidation (74, 75), likely 
because reward has been shown to enhance hippocampal replay 
during rest (76). We demonstrate that the effects of motivation 
and reward are evident after a delay that permits consolidation, 
but we were not able to determine whether these effects require 
consolidation. Future studies could test shorter or longer delay 
periods to investigate when these memory effects emerge.

In our paradigm, we instructed participants to “imagine” being 
a thief as they moved through a museum, discovering art within 
rooms that varied in value. The only difference in imagination 
requirements between conditions was the reason for the activity: 
reconnaissance versus implementation. Although we did not 
instruct participants to construct mental imagery or visualize spe-
cific details, some participants may have spontaneously generated 
mental imagery. As there are substantial individual differences in 
the ability to conjure mental imagery (77, 78), it is possible that 
individuals who form more detailed mental images may respond 
more to our instructional manipulation. For instance, in prior 
research, we showed that an imagination exercise enhanced sub-
sequent learning from prediction error pertaining to health risks 
(79). Future studies could investigate whether individual differ-
ences in mental imagery predict the extent to which our cover 
stories influence behavioral indices of motivational states.

Similarly, our findings relate to other literatures that pertain to 
planning and future-oriented cognition. Prior studies have shown 
that imagination (episodic simulation and episodic future think-
ing) can encourage patient decision-making (80, 81) and enhance 
prospective memory (82, 83). Engaging episodic memory systems 
via imagination may thus increase future-oriented thinking and 
interrogative motivation. Future studies that involve episodic sim-
ulation could explore whether the vividness of imagined scenarios 
predicts motivation, exploration, or memory outcomes.

Conclusion. By using a prelearning manipulation of motivational 
states, we biased participants’ choice behavior and memory 
outcomes. Imperative motivation promoted exploitative choices 
to maximize rewards during reinforcement learning, whereas 
interrogative motivation promoted directed exploration to reduce 
uncertainty. Interrogative motivation enhanced subsequent 
recognition, reward prioritization, and value memory, whereas 
imperative motivation disrupted reward enhancements of memory. 
These findings have broad theoretical implications; the imperative/
interrogative motivational framework unifies and reconciles 
findings from memory and decision-making research. Instructed 
motivational states could strategically prioritize immediate 
performance or long-term learning, thus aligning cognitive 
processes with learning goals to support context-appropriate 
choices and memory formation.

Methods

Participants. The study was approved by the Duke University Campus 
Institutional Review Board (protocol #2022-0032). We collected an initial sam-
ple (sample 1), then validated our findings in a preregistered replication sample 

(sample 2). In sample 1, we recruited 200 participants from Prolific, an online 
testing platform. This sample size was chosen to exceed the samples previously 
reported in similar paradigms (23, 28), account for attrition, and ensure an ade-
quate amount of data for using hierarchical computational modeling to estimate 
group differences in latent variables. Data collection for sample 1 was conducted 
in two batches; we collected additional data to supplement an initial sample after 
observing effects of interest with small effect sizes. For sample 2, we conducted a 
power analysis based on key results from sample 1 (SI Appendix, Power Analyses). 
We then preregistered a replication sample with directional hypotheses. After 
exclusions and attrition (SI Appendix, Exclusions and Attrition), sample 1 included 
200 participants (158 with Session 2 data) and sample 2 included 220 partici-
pants (200 with session 2 data).

Participants were compensated with $2.50 for completing session 1 (approxi-
mately 15 min) and $3 for completing session 2 (approximately 20 min). We also 
calculated bonus payments determined by points earned during the session 1 
reinforcement learning task (average bonus = $5). During the recruitment and 
consent process, participants were informed that the bonus would be determined 
by performance during the reinforcement learning task, but this bonus would not 
be awarded until after completion of the entire two-session study.

All participants were young adults (mean age 28.1 y, range 19 to 36 y). The 
gender identity (self-reported) distribution was balanced (49.6% female, 49.6% 
male, 0.8% other/not disclosed). The racial distribution was as follows: 58.8% 
White, 17.6% Asian, 9.7% Black, 9.2% two or more races, and 3.7% other. Inclusion 
criteria were as follows: fluent in English, currently residing in the United States, 
no current psychiatric or neurological diagnoses, no current medication use to 
treat psychiatric conditions, and normal or corrected-to-normal vision. Participants 
provided informed consent via an online form presented before the task.

Imperative and Interrogative Conditions. All participants completed a task 
that involved searching a virtual art museum for valuable paintings. Although 
the task and reinforcement contingencies were identical for the two conditions, 
the imperative and interrogative conditions featured different task instructions 
that varied the cover story, thus influencing participants’ motivational states. In 
the imperative condition, participants were instructed to imagine that they were 
a master thief executing a heist at an art museum (emphasizing urgent, salient 
goals). In the interrogative condition, participants read a slightly different version 
of the cover story that instructed them to imagine that they were a master thief 
scouting the museum to plan a future heist (emphasizing exploration for future 
goals). The full text of these cover stories is provided in SI Appendix, Cover Story 
Text. Participants were randomly assigned to either the imperative condition 
(sample 1: n = 99, sample 2: n = 109) or the interrogative condition (sample 1: 
n = 101, sample 2: n = 111).

Importantly, all participants were informed (in the advertisement and consent 
form) that they would receive a performance bonus that depended on points 
earned during the art museum task, but this bonus would not be awarded until 
they returned the following day and completed the second study session. Therefore, 
expectations about actual reward contingencies and delivery were equated across 
conditions. Since the interrogative cover story emphasized planning for future 
goals, one concern is that interrogative condition participants may have been 
confused about whether they would directly benefit from points earned during 
the art museum task, or whether they would need to revisit the art museum the 
following day to earn a bonus. To ensure that participants in both conditions fully 
understood the bonus payments, in sample 2 we added a clarification message 
after the consent form to emphasize that bonus payments would be determined 
by the points earned during the art museum task in session 1, and bonuses would 
not be awarded until after completion of session 2. Participants in sample 2 were 
required to press a button to acknowledge this clarification message.

Art Museum Task (Reinforcement Learning). Participants completed 100 
trials of an online 4-armed restless bandit task (programmed with PsychoPy 
v2021.2.3 and hosted by Pavlovia) in which they searched a virtual art museum 
for valuable paintings. On each trial (self-paced), the participant chose one of four 
colored doors (i.e., bandits), representing different rooms of the museum. The 
participant then viewed one trial-unique painting sampled from the room, with 
the value of the painting displayed below the image (4 s). After a brief fixation 
screen (1.5 s), participants returned to the four doors to begin the next trial. The 
stimuli were 100 unique scene images edited with an Adobe Photoshop filter D
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that mimicked the appearance of a painting. The order of the paintings presented 
was randomized for each subject. The paintings themselves were irrelevant to 
the reinforcement learning task; the goal was to choose among the four doors 
to either maximize rewards (imperative condition) or learn about the average 
value of the doors (interrogative condition).

Each room of the museum yielded rewards drawn from a different value distri-
bution. The average reward from each room drifted slowly over the course of the 
task to encourage ongoing learning and exploration. To ensure that effects were 
not specific to a particular reward schedule, participants were randomly assigned 
to one of three drifting reward schedules, the same schedules used in two prior 
studies (23, 28). The mean rewards for each door followed decaying Gaussian 
random walks (decay parameter λ = 0.9836; decay center θ = 50). On each 
trial, the reward value was drawn from the distribution for the chosen door with 
mean payoff μi,t and variance �2

o
 = 42 (observation variance) and diffused with 

noise drawn from a distribution with μ = 0 and �2

d
 = 2.82 (diffusion variance).

The task also included attention checks to ensure participant engagement. 
Between trials (after the fixation screen), participants sometimes viewed an image 
of a museum security guard (2 s) and were instructed to press the spacebar key 
to avoid the guard. There was a 10% chance of the guard appearing on any given 
trial. On average, participants successfully completed 11.29 attention checks.

Next-Day Memory Test. The next day, participants were asked to return for 
a second session that consisted of a self-paced memory test. Prior to returning 
for session 2, participants were not informed that there would be a memory 
test. Across both samples, the average delay between sessions was 25 h (range 
19 to 45 h). In sample 1, the final sample for the memory test consisted of 158 
participants (imperative: n = 83, interrogative: n = 75). In sample 2, the final 
sample for the memory test consisted of 200 participants (imperative: n = 105, 
interrogative: n = 95).

We presented 100 paintings previously shown during the art museum task 
and 75 novel paintings in a randomized order. Due to a programming error, the 
stimulus set used for the memory test included two similar images of the same 
landmark; these two trials were excluded from analyses for each participant. On 
each trial, participants viewed one painting image, reported whether it was old 
or new, and rated their confidence on a continuous sliding scale with anchors at 
zero (“Guessing”) and one (“Very confident”). For paintings identified as “old,” 
participants were subsequently asked to report the value of the painting and 
identify the museum door that had been associated with the painting during 
the reinforcement learning task.

Computational Modeling. We developed eight hierarchical Bayesian reinforce-
ment learning models to fit trial-by-trial choice behavior. Each model consisted of 
a learning rule that governed the rate of expected value update after observing 
the reward outcome on a trial, and a choice rule that integrated various kinds of 
value estimates. In each model, all free parameters at the participant level were 
estimated hierarchically, and we modeled a group difference hyperparameter 
to account for potential difference in means between the imperative and inter-
rogative conditions (see Model Fitting section in SI Appendix for more details).

All models were estimated using hierarchical Bayesian modeling in the RStan 
package (84) (version 2.21.0) in R (version 4.1.2) with data from sample 1. After 
parameter estimation, we used Bayesian leave-one-out cross-validation approx-
imation to compare the predictive accuracy of the eight models using the loo 
package (85) (version 2.4.1). The loo package uses Pareto smoothed importance 
sampling (PSIS) to compute pointwise out-of-sample predictive accuracy, where 
one data point (observed choice on one trial) is repeatedly taken out of the dataset 

and how well the refitted model (refitted on the remaining data) predicts the 
left-out data point is estimated. PSIS-loo values were calculated for each model 
based on the fitted RStan output, using the log likelihood function evaluated at 
the sampled posterior parameter values. PSIS-loo values are not biased in favor 
of more complex models (28, 86). Model comparison results showed that the 
model with the Delta learning rule and the choice rule with all three components 
(expected value + directed exploration bonus + perseveration bonus) had the 
highest predictive accuracy (SI Appendix, Fig. S1). Parameter estimates from the 
best-fitting model were used in subsequent behavioral analyses for both samples.

Briefly, the best-fitting model included the following free parameters: a learn-
ing rate parameter � , an inverse temperature parameter β, a directed exploration 
parameter φ, and a perseveration parameter ρ. The learning rate controls the pro-
portion of the prediction error (difference between expected value and observed 
reward) used in updating expected value, and is the same across all trials in the 
delta learning rule. According to the choice rule, door choices are made based on 
three factors: The inverse temperature parameter controls the extent to which a par-
ticipant chooses based on the expected value of the doors, the directed exploration 
parameter controls the extent to which a participant chooses to resolve uncertainty 
about the expected value (uncertainty is proportional to the amount of time since 
a door was last chosen; refs. 21 and 28), and the perseveration parameter controls 
the extent to which a participant repeats the choice they made on the previous trial.

Further information about model specifications, model fitting procedure, 
model checks and validation are provided in SI Appendix (sections entitled Model 
Specification, Model Fitting, Prior Predictive Checks, Model Recovery, Parameter 
Recovery, and Posterior Predictive Checks; SI Appendix, Figs. S3–S6). Stan code 
for all models is provided in an Open Science Framework repository (https://osf.
io/7sz23/).

Statistical Analyses. Statistical analysis was conducted with R; further infor-
mation about packages is provided in SI  Appendix (R Packages). For sample 
1, all statistical tests reported were two-tailed. For sample 2, we preregistered 
directional hypotheses and conducted one-tailed tests. Significance testing for all 
mixed-effects models used Satterthwaite approximations of degrees of freedom.

Based on the trial-by-trial estimated values and uncertainties for each door pro-
duced by the best-fitting model, we classified each choice as exploitation (select-
ing the door with the highest expected value), directed exploration (selecting the 
door with the highest uncertainty), or random exploration (selecting one of the 
other doors) (23, 28). Each postwarmup iteration of model-fitting generated trial-
by-trial expected value estimates for each door (the expected values for each door 
before a choice was made on a given trial), and the mean values from all iterations 
were used as the model-estimated expected value in the choice classification 
analysis. Uncertainty in the delta learning rule model was operationalized as the 
number of trials since a door was last selected (21, 28).

Data, Materials, and Software Availability. All data and code necessary to repro-
duce results are provided in a permanent, publicly accessible repository hosted by 
the Open Science Framework (https://osf.io/7sz23/) (87). Sample 1 was not prereg-
istered. Sample 2 was a preregistered replication sample (https://osf.io/ftqkr) (88).
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